Getting Started with XNA Game Studio 3.1
by Chad Carter, Microsoft XNA/DirectX MVP
http://tinyurl.com/chadcarter

The majority of this lab was adapted from Microsoft XNA Game Studio 3.0 Unleashed by Chad Carter.
Creating the Platformer Starter Kit
Open XNA Game Studio from the Start Menu.
With XNA Game Studio opened, once you create a new project, you should see a screen similar to the following figure.
[image:]

Select the Platformer Starter Kit template and feel free to change the name of the project. Click OK to create the project.

Compiling and Running Platformer
You need to make sure you can compile the code.
1. To just compile without running, either press Ctrl+Shift+B, press F6, or click Build Solution on the Build menu. The code should have compiled without any issues.
You can now press Ctrl+F5 to actually run the game.
Have some fun playing the game. Feel free to look around the code and tweak it. Fortunately, you can always re-create the template if something gets really messed up!
Move your player with the Arrow Keys
Jump your player with the Spacebar
Modify Level 1
....................
....................
..........X.........
.......######.......
..G..............G..
####..G.G.G.G....###
.......G.G.GCG......
......--------......
....-...........-...
....................
.G.G............G.G.
####............####
....................
.1..................
####################
Above is the default level data in the file 1.txt. We won’t discuss Content Projects here, but note that this platformer can run on Windows, the Xbox 360 and the Zune. As a result, in this starter kit, there are HighResolutionContent (for Windows and Xbox 360), LowResolutionContent (for the Zune) and SharedContent (for all three).
For the Zune, the levels are built so you can hold the Zune upright. As a result, they are different than the Windows and Xbox 360 versions. We are only modifying the 1.txt in the HighResolutionContent project. Note that the projects are linked, so by changing the 1.txt file in the HighResolutionContent project that both the Xbox 360 and Windows version is affected. Since in this lab we only have access to Windows machines, it may cause less confusion if you only work on the Windows project.
1. Add another AI enemy on the level anywhere you would like. Take a look at the current level in the game to see if you can determine what character represents what tiles.
Hint:
. = Empty space
1 = Starting Point
X = Exit
G = Gem

What do you think # and – mean?

XNA Framework 2D Basics
Next, we will actually create a new 2D project where we will create an indeterminate progress bar. This can be helpful when loading content, or a level or anything else that may take a while to complete.
Before we being this part of the lab, let’s discuss the 2D coordinate system. The top left of the screen is the origin of the screen (0,0). The x axis runs horizontally at the top of the screen, and the y axis runs vertically down the left side of the screen. The coordinate system is identical to how a texture’s coordinate system is used.
The values run from 0 to the width and height of the screen. Therefore, if the resolution is 1024×768, the x values would run from 0,0 to 1023,0. The y values would run from 0,0 to 0,767. x runs from left to right, and y runs from top to bottom. The bottom-right pixel of the screen would be 1023,767. This can be seen in the following figure:
[image: C:\Users\Chad\Documents\xnagsunleashed3\xnagsunleashed3\Figures\09Fig\09Fig01.png]
The 2D coordinate system origin is the top left of the screen.
Although the origin of the screen is 0,0, the origin of a sprite / texture / image may or may not be. The default is 0,0, but the origin can be overridden if needed. When we draw sprites to the screen, we need to be aware of where the origin of the sprite is because when we pass in a coordinate (via a Vector2 type), XNA will draw the object to that location, starting with the origin of the sprite. Therefore, if we draw the sprite at location 100,200 and we do not touch the origin of the sprite, the top left of the sprite would get drawn in 100,200. If we wanted 100,200 to be the center, we would need to define the origin of our sprite or we would need to offset our position manually. When we rotate our sprites, they will rotate around their origin. When we need to rotate our sprites we will typically set the origin of the sprite to be its center. This way, the sprite will rotate around the center. Otherwise, the sprite would rotate around 0,0. The difference can be seen in the following figure:
[image:]
The origin of the sprite determines how the sprite will be rotated.

We can also scale a sprite. Scaling comes in three different flavors. We can give a number to scale the entire sprite by or we can just scale one portion of the sprite. When we scale the entire sprite by a value, that value is stored as a float. The default scale used is 1.0, which does no scaling and displays the texture in its original size. The final way we can scale is to specify a source rectangle and then specify a destination rectangle. XNA can scale our source rectangle to fit into our destination rectangle.
Sprite batches are simply batches of sprites. Drawing a lot of sprites on the screen can put a load on the machine because we have to send a separate instruction to the graphics card each time we draw something to the screen. With a sprite batch, we have the ability to group our draw functions to occur within the same settings and send one draw call to the graphics card.

Creating an Indeterminate Progress Bar Demo

1. Create a new Windows Game for XNA Game Studio 3.1 called ProgressBarDemo.

[image:]

Add a new game component to our project called ProgressBar.cs.
a. Right Click the ProgressBarDemo project
b. Select Add New Item
c. Make sure XNA Game Studio 3.1 is selected under Categories
d. Select Game Component from the Templates list
e. Set the Name to ProgressBar.cs

Set up the following private member fields of our newly created progress bar game component:
private Texture2D progressBar;
private readonly Vector2 initializationVector = new Vector2(-99, -99);
private Vector2 currentPosition;
private Vector2 originalPosition;
private Vector2 position;

//background area of our texture (256 - 63 = 193)
private Rectangle progressBarBackground = new Rectangle(63, 0, 193, 32);
//foreground of our texture
private Rectangle progressBarForeground = new Rectangle(0, 0, 63, 20);

// where we want our foreground to show up on our background
private Vector2 progressBarOffset = new Vector2(7, 6);
public float MoveRate = 90.0f;

The first variable we set up was our initialization vector. We do this so we can tell if our Draw method has ever been called before. We are going to create our own Draw method and will not be inheriting from DrawableGameComponent because we want to pass in an instance of our sprite batch and we cannot change the signature of the Draw method inside of DrawableGameComponent. We will get to our Draw method in a moment, but for now we need to initialize our variables inside our constructor.
Add the following line in our constructor:
Enabled = false;
We set the Enabled flag of our game component to false. We explicitly need the caller to enable this component when they want this component to draw the progress bar.
Override the event that tells us that the Enabled property has changed. Add the following method to the ProgressBar class:
protected override void OnEnabledChanged(object sender, EventArgs args)
{
if (Enabled)
currentPosition = originalPosition = initializationVector;

base.OnEnabledChanged(sender, args);
}

When the game enables our game component, we initialize the original and current position of the actual progress bar foreground.

In the Load method we need to load the progress bar texture from the Content Manager:
public void Load(Vector2 position)
{
progressBar = Game.Content.Load<Texture2D>(@"progressbar");
this.position = position;
}

Fortunately, XNA allows us to load content inside our game components. We do not have to rely on our game to hold the resources because we can add the content directly inside our component project.

Add the progressbar.png file to the Content project.
f. Copy the progressbar.png file so it is in the clipboard
g. In the Solution Explorer inside of Visual Studio, expand the Content project
h. Right Click on the Content project node and select Paste the image
Our Load method loaded our progress bar texture, and it also stored the position where the component should be drawn. The game will pass in the position to this method, and we will use the value to draw the progress bar at the correct place on the screen.
When we set up our member fields, we created rectangles to specify where in our texture the progress bar background and foreground are. We also set up an offset of where we want to draw the foreground on our background. We will be using these values in our Draw method. They will be explained in detail next.
Add the following Draw method to ProgressBar.cs.
public void Draw(GameTime gameTime, SpriteBatch spriteBatch, Color color)
{
if (!Enabled)
return;

if (progressBar == null)
throw (new ApplicationException(@"You must call Load before
calling Draw"));

spriteBatch.Draw(progressBar, originalPosition, progressBarBackground,
Color.White);

spriteBatch.Draw(progressBar, currentPosition + progressBarOffset,
progressBarForeground, color);
}

We pass in the game time, the sprite batch we are supposed to draw to, the top-left position of the screen where we want to draw our progress bar, and finally the color that we want to tint our progress bar’s foreground. The first thing we check in this function is whether our component is enabled. If it is not, we simply return. We don’t want to draw the progress bar component if it is disabled.
The next thing we check for is to make sure our progressBar texture has been created. If it is has not, we throw an error letting the developer know he or she needs to call the component’s Load method before calling the Draw method. We could just gracefully ignore it, but it could cause confusion as to why the progress bar did not display.
We actually are drawing the progress bar on the screen with two different calls to the sprite batch passed in. One draws the background at the original position passed in, and the other draws the foreground at the current position. We store the original position just in case the game decides to change positions in the middle of our drawing. This is important since we are making this a game component that we can reuse in other games or put in a library for other developers.
As we draw our foreground, we are using the color passed in to tint our white progress bar. This way our progress bar can be any color we want. We determine the position to draw our foreground by adding our offset vector to our current position vector. This way, we can center the foreground vertically and push it over a little so it is not flushed to the left when it starts out.
Here is the actual progress bar image we are using:
[image: C:\Users\Chad\Documents\Visual Studio 2008\Projects\XNAUnleashed30\31conversion\Chapter12\XELibrary\Content\Textures\progressbar.png]
 The image is 256 x 32. The four squares at the top left of the image is the progress bar’s foreground and we store that rectangle in the progressBarForeground rectangle member field we created earlier (0, 0, 63, 20). It starts at position 0,0 and is 63 pixels wide and 20 pixel high. The long rectangle to the right is the progress bar’s background. We store this rectangle in the progressBarBackground (63, 0, 193, 32). The starting position is at 63, 0 and it is 193 (256-63) pixels wide and 32 pixels high. The area under the foreground is unused.
Replace the Update method in ProgressBar.cs.
public override void Update(GameTime gameTime)
{
if (currentPosition == initializationVector) //first time in
currentPosition = originalPosition = position;
else
currentPosition += new Vector2(MoveRate *
(float)gameTime.ElapsedGameTime.TotalSeconds, 0);

//have we reached the end (or the beginning) of our area?
//If so reverse direction
if (currentPosition.X > originalPosition.X +
(progressBarBackground.Width - progressBarForeground.Width - 15)
|| currentPosition.X < position.X)
{
MoveRate = -MoveRate;
}
base.Update(gameTime);
}

We check to see if this is the first time our Update method has been called. We do this by checking our current position’s value. If it is still set to the initialization value, then we know this is the first time this component has been called since it has been enabled. At this point we reset our current and original positions to match the position passed into the Load method.
If this is not the first time our Update method has been called, we update our currentPosition by the public member field MoveRate we declared. We set this up as public to allow our game to override how fast or slow the progress bar should move. To translate our foreground position, we are simply adding a vector that contains the product of our move rate and the elapsed total seconds of our game time. Remember, we do this so that when our frame rate changes we still get nice, even flow.
The last check we do in our Update method tests to see if our foreground is about to be moved outside the progress bar’s background rectangle. If it is, we simply reverse the direction by changing the MoveRate value. This way, our progress bar foreground will simply bounce back and forth inside the background.
Now that we are done adding the component to our library, we can open our game code and add the following private member fields:
private Vector2 position = new Vector2(150, 150);
private ProgressBar progressBar;
We start by setting up the position at which we want to draw our component on the screen. Next, we set up our sprite batch, and our progress bar game component.
Set up the game components at the end of the Game1 constructor:
progressBar = new ProgressBar(this);
Components.Add(progressBar);
We are adding our progress bar game component to our game’s component collection. By creating the progress bar in a game component, we can easily drop it into any game we make.
Now we can initialize our sprite batch by calling the following code inside our LoadContent method:
progressBar.Load(position);
progressBar.Enabled = true;
We load our progress bar so it can grab its asset and be ready to draw when we are.

Finish up our game class by adding the following to our Draw code under the TODO comment:
spriteBatch.Begin();
progressBar.Draw(gameTime, spriteBatch, Color.Blue);
spriteBatch.End();
We are drawing our progress bar on the screen at position 50,50, and we are tinting the color of the foreground to blue. With just a little bit of code, we have a reusable progress bar we can now use in our games on our splash and load screens.
Compile and Run the demo to see the progress bar on the screen.
Change the color of the progress bar to something else.
Change the color of the background to something other than CornflowerBlue.
Hint: The color is same place you change the color of the progress bar.
Drawing 2D Text
Before we can draw any text, we need a font. The XNA Framework includes built-in font support. We can use any TrueType font in our games. It also allows the use of bitmaps, which can either be drawn by hand or be generated with the Bitmap Font Make Utility (ttf2bmp). This utility can be found on XNA Creators Club Online at http://creators.xna.com/en-us/utilities/bitmapfontmaker.
For this lab, we are going to import a TrueType font. You can import TrueType fonts by following these steps:
1. Right-click the Content project and click Add / New Item.
Choose Sprite Font. Name the file Arial.spritefont. This will open the newly created .spritefont XML file.
In the .spritefont XML file, change the FontName element value to the friendly name of the font we want to load, Arial.
TIP
You can find the name of the font by looking in the Fonts folder in the Control Panel. You can use any TrueType font but you cannot use bitmap (.fon) fonts.
(Optional) Change the Size element to be the point size we want the font to be.
(Optional) Change the Spacing element, which specifies the number of pixels there should be between each character in the font.
(Optional) Change the Style element, which specifies how the font should be styled. This value is case sensitive and can be one of the following values: Regular, Bold, Italic, or Bold Italic.
(Optional) Change the CharacterRegions element, which contains the start and end characters that should be generated and available for drawing. If we were only displaying specific characters, utilizing this can save on the font file size, which can help with loading times.

Now that we have added this spritefont file, when we compile our code the compiler will generate the resource needed so we can utilize the font in our game. The XML file is simply a description to the compiler as to which TrueType font to grab and which characters to create in the .xnb file.
Now that we have our font imported, we can actually use it. We are going to display the text “Loading...” right above the progress bar.
Add the following private member fields to the Game1.cs file:
private Vector2 loadingPosition = new Vector2(150, 120);
private SpriteFont font;
Load the font in our game class. Load this just like any other content inside of the LoadContent method:
font = Content.Load<SpriteFont>(@"Arial");
Finally, inside the Draw method, above the call to end the sprite batch, add the following statement:
spriteBatch.DrawString(font, "Loading ...", loadingPosition, Color.White);
Compile and Run the ProgressBarDemo and see “Loading...” displayed above the progress bar.

Congratulations on creating a fully functioning indeterminate progress bar!

The majority of this lab was adapted from Microsoft XNA Game Studio 3.0 Unleashed by Chad Carter.
11

image3.png

image4.png

image5.png

image1.png

image2.png

